Balancing Nuclear Equations

Name:

Period:

There are two types of nuclear reactions: Fission, where a nucleus breaks into two or more pieces, and fusion where two or more nuclei combine to form a new element. In nuclear reactions, only the nucleus is involved. Electrons are ignored. Some atomic nuclei are inherently unstable and spontaneously change or "decay". There are four types of decay:

Туре	Symbol	Charge of	Mass(AMU)	Effect on	Effect on Atomic	Strength
		particle		Atomic #	Mass	
Alpha	α	+2 (He	4	decrease by 2	decrease by 4	Stopped by
		nucleus)				paper
Beta-	β-	-1	0	increase by 1	0	Aluminum Foil
e- emission	electron					
Beta+	β+	+1	0	decrease by 1	0	Aluminum Foil
e- capture	Positron					
Gamma	γ	none	none	none	none	Lead

The net result of α , β - or β + decay is a new element. In b- decay, a neutron decays into a p+ and an ewhich is then ejected. In β + decay a p+ captures an e- and transforms into a neutron. But despite the nature of the reaction the law of conservation of matter still applies and the equations are balanced the same way. Note α particle is a helium nucleus!

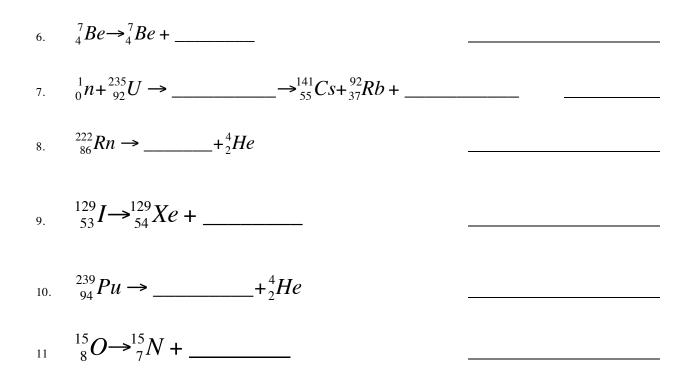
Another type of reaction occurs when something impacts a nucleus. These reactions result either in the nucleus splitting (fission) or the combination of two or more nuclei to form a third, different nucleus (fusion).

Balancing Nuclear Equations: Matter must be conserved including all p+ & n°. Example:

Decay reaction (α decay) Fission Reaction Fusion Reaction: ${}^{219}_{86}Rn \rightarrow {}^{4}_{2}He + {}^{215}_{84}Po$ ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{92}_{36}Kr + {}^{141}_{56}Ba + {}^{3}_{0}n$ ${}^{35}_{17}Cl + {}^{1}_{1}H \rightarrow {}^{36}_{18}Ar \text{ another example } {}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n^{\circ}$

Practice

Fill in the missing symbol and name the reaction:


$$_{1.} \quad {}_{1}^{3}H \rightarrow \underline{\qquad} + {}_{-1}^{0}e$$

$$_{2.} \quad {}^{232}_{92}U \rightarrow {}^{228}_{90}Th + _$$

$$_{3.}$$
 $^{144}_{58}Ce \rightarrow ^{144}_{59}Pr + _$

 $_{4.} \qquad {}^{65}_{30}Zn \rightarrow \underline{\qquad} + {}^{0}_{+1}e$

$$_{5.}$$
 $^{40}_{19}K \rightarrow ^{40}_{18}Ar + _$

- 12. Write a balanced nuclear equation for each decay process indicated.a. The isotope Th-234 decays by an alpha emission.
 - b. The isotope Fe-59 decays by a beta emission.
 - c. The isotope Tc-99 decays by a gamma emission.
 - d. The isotope C-11 decays by a electron capture.

Balance these equations: Note ${}_{2}^{4}He$ is the only stable isotope of helium.

13. ${}_{1}^{1}H + {}_{3}^{7}Li \rightarrow$ ______H + ____He

15. What is the balanced nuclear equation for the reaction of curium-246 with carbon-12 to produce nobelium-254 and four neutrons?

16. What is the balanced nuclear equation for the reaction of californium-250 with boron-10 to produce lawrencium-258 and two neutrons?

1.
$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + {}^{0}_{-1}e \qquad \beta \cdot decay$$

2. ${}^{232}_{92}U \rightarrow {}^{228}_{90}Th + {}^{4}_{2}He \qquad \alpha decay$
3. ${}^{144}_{58}Ce \rightarrow {}^{144}_{59}Pr + {}^{0}_{-1}e \qquad \beta \cdot decay$
4. ${}^{65}_{30}Zn \rightarrow {}^{65}_{29}Cu + {}^{0}_{+1}e \qquad \beta + decay$
5. ${}^{40}_{19}K \rightarrow {}^{40}_{18}Ar + {}^{0}_{+1}e \qquad \beta + decay$
6. ${}^{7}_{4}Be \rightarrow {}^{7}_{4}Be + \gamma \qquad \gamma decay$
7. ${}^{0}_{1}n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U \rightarrow {}^{141}_{55}Cs + {}^{92}_{37}Rb + {}^{3}_{0}n$ Fission
8. ${}^{222}_{86}Rn \rightarrow {}^{218}_{8}Po + {}^{4}_{2}He \qquad \alpha decay$
9. ${}^{129}_{53}I \rightarrow {}^{54}_{54}Xe + {}^{0}_{-1}e \qquad \beta \cdot decay$
10. ${}^{239}_{94}Pu \rightarrow {}^{235}_{92}U + {}^{4}_{2}He \qquad \alpha decay$
11. ${}^{15}_{8}O \rightarrow {}^{7}_{7}N + {}^{0}_{+1}e \qquad \beta + decay$
12. ${}_{a.} {}^{234}_{90}Th \rightarrow {}^{230}_{88}Ra + {}^{4}_{2}He \qquad b. {}^{59}_{26}Fe \rightarrow {}^{59}_{27}Co + {}^{0}_{-1}e \qquad c. {}^{43}_{43}Tc \rightarrow {}^{43}_{4}Tc + \gamma \qquad d. {}^{11}_{6}C + {}^{0}_{-1}e \rightarrow {}^{11}_{5}B$
13. ${}^{1}_{1}H + {}^{3}_{3}Li \rightarrow {}^{2}_{2}He \text{ or } {}^{8}_{4}Be$
14. ${}^{7}_{4}Be + {}^{0}_{0}n \rightarrow {}^{2}_{1}^{2}H + {}^{4}_{2}He \text{ or } {}^{1}_{1}H + {}^{3}_{1}H + {}^{4}_{2}He \qquad 15. {}^{246}_{96}Cm + {}^{12}_{6}C \rightarrow {}^{254}_{102}No + {}^{1}_{0}n$

 ${}_{16.} {}^{250}_{98}Cf + {}^{10}_{5}B \rightarrow {}^{258}_{103}Lr + 2{}^{1}_{0}n$