Name: \qquad Period: \qquad

There are two types of nuclear reactions: Fission, where a nucleus breaks into two or more pieces, and fusion where two or more nuclei combine to form a new element. In nuclear reactions, only the nucleus is involved. Electrons are ignored. Some atomic nuclei are inherently unstable and spontaneously change or "decay". There are four types of decay:

Type	Symbol	Charge of particle	Mass(AMU)	Effect on Atomic \#	Effect on Atomic Mass	Strength
Alpha	α	$+2(H e$ nucleus)	4	decrease by 2	decrease by 4	Stopped by paper
Beta- e- emission	$\beta-$ electron	-1	0	increase by 1	0	Aluminum Foil
Beta+ e- capture	$\beta+$ Positron	+1	0	decrease by 1	0	Aluminum Foil
Gamma	γ	none	none	none	none	Lead

The net result of α, β - or $\beta+$ decay is a new element. In $b-$ decay, a neutron decays into a $p+$ and an ewhich is then ejected. In $\beta+$ decay a p+ captures an e- and transforms into a neutron. But despite the nature of the reaction the law of conservation of matter still applies and the equations are balanced the same way. Note α particle is a helium nucleus!

Another type of reaction occurs when something impacts a nucleus. These reactions result either in the nucleus splitting (fission) or the combination of two or more nuclei to form a third, different nucleus (fusion).

Balancing Nuclear Equations: Matter must be conserved including all p+\&n. Example:

Decay reaction (α decay)
Fission Reaction
${ }_{86}^{219} \mathrm{Rn} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{84}^{215} \mathrm{Po}$
${ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{36}^{92} \mathrm{Kr}+{ }_{56}^{141} B a+3{ }_{0}^{1} n$
${ }_{17}^{35} \mathrm{Cl}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{18}^{36} \mathrm{Ar}$ another example ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+n^{\circ}$

Practice

Fill in the missing symbol and name the reaction:

$$
\begin{aligned}
& \text { 1. }{ }_{1}^{3} H \rightarrow+{ }_{-1}^{0} e \\
& \text { 2. } \quad{ }_{92}^{232} U \longrightarrow{ }_{90}^{228} T h+ \\
& { }_{58}^{144} \mathrm{Ce} \rightarrow{ }_{59}^{144} \mathrm{Pr}+ \\
& \text { 4. }{ }_{30}^{65} \mathrm{Zn} \rightarrow \longrightarrow+{ }_{+1}^{0} e \\
& \text { 5. }{ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{18}^{40} \mathrm{Ar}+
\end{aligned}
$$

6. ${ }_{4}^{7} B e \rightarrow{ }_{4}^{7} B e+$ \qquad
7. ${ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow \longrightarrow{ }_{55}^{141} \mathrm{Cs}+{ }_{37}^{92} \mathrm{Rb}+$ \qquad
8. $\quad{ }_{86}^{222} R n \rightarrow+\quad+{ }_{2}^{4} \mathrm{He}$
9. $\quad{ }_{53}^{129} \mathrm{I} \rightarrow{ }_{54}^{129} \mathrm{Xe}+$ \qquad
10. $\quad{ }_{94}^{239} \mathrm{Pu} \rightarrow \longrightarrow+{ }_{2}^{4} \mathrm{He}$
${ }_{11}{ }_{8}^{15} O \longrightarrow{ }_{7}^{15} N+$ \qquad
11. Write a balanced nuclear equation for each decay process indicated.
a. The isotope Th- 234 decays by an alpha emission.
b. The isotope $\mathrm{Fe}-59$ decays by a beta emission.
c. The isotope Tc-99 decays by a gamma emission.
d. The isotope $\mathrm{C}-11$ decays by a electron capture.

Balance these equations: Note ${ }_{2}^{4} \mathrm{He}$ is the only stable isotope of helium.
13. ${ }_{1}^{1} H+{ }_{3}^{7} L i \rightarrow$ \qquad
14. ${ }_{4}^{7} B e+n^{\circ} \rightarrow$ \qquad $\mathrm{H}+$ \qquad He
15. What is the balanced nuclear equation for the reaction of curium- 246 with carbon- 12 to produce nobelium-254 and four neutrons?
16. What is the balanced nuclear equation for the reaction of californium- 250 with boron- 10 to produce lawrencium-258 and two neutrons?

1. ${ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{-1}^{0} e$
β - decay
2. ${ }_{92}^{232} U \rightarrow{ }_{90}^{228} T h+{ }_{2}^{4} \mathrm{He} \quad \alpha$ decay
3. ${ }_{58}^{144} \mathrm{Ce} \rightarrow{ }_{59}^{144} \mathrm{Pr}+{ }_{-1}^{0} e \quad \beta$ - decay
4. ${ }_{30}^{65} \mathrm{Zn} \rightarrow{ }_{29}^{65} \mathrm{Cu}+{ }_{+1}^{0} e \quad \beta+$ decay
5. ${ }_{19}^{40} K \rightarrow{ }_{18}^{40} \mathrm{Ar}+{ }_{+1}^{0} e \quad \beta+$ decay
6. ${ }_{4}^{7} B e \rightarrow{ }_{4}^{7} B e+\gamma \quad \gamma$ decay
7. ${ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{92}^{236} U \rightarrow{ }_{55}^{141} C s+{ }_{37}^{92} R b+3{ }_{0}^{1} n \quad$ Fission
8. ${ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+{ }_{2}^{4} \mathrm{He} \quad \alpha$ decay
9. ${ }_{53}^{129} I \rightarrow{ }_{54}^{129} \mathrm{Xe}+{ }_{-1}^{0} e \quad \beta$ - decay
10. ${ }_{94}^{239} \mathrm{Pu} \rightarrow{ }_{92}^{235} \mathrm{U}+{ }_{2}^{4} \mathrm{He} \quad \alpha$ decay
11. ${ }_{8}^{15} O \rightarrow{ }_{7}^{15} N+{ }_{+1}^{0} e \quad \beta+$ decay
12.

a. $\quad{ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{88}^{230} \mathrm{Ra}+{ }_{2}^{4} \mathrm{He}$
b. $\quad{ }_{26}^{59} \mathrm{Fe} \rightarrow{ }_{27}^{59} \mathrm{Co}+{ }_{-1}^{0} e$
c. ${ }_{43}^{99} T c \rightarrow{ }_{43}^{99} T c+\gamma$
d. ${ }_{6}^{11} C+{ }_{-1}^{0} e \rightarrow{ }_{5}^{11} B$
13. ${ }_{1}^{1} \mathrm{H}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$ or ${ }_{4}^{8} \mathrm{Be}$
14. ${ }_{4}^{7} \mathrm{Be}+{ }_{0}^{1} \mathrm{n} \rightarrow 2{ }_{1}^{2} \mathrm{H}+{ }_{2}^{4} \mathrm{He}$ or ${ }_{1}^{1} \mathrm{H}+{ }_{1}^{3} \mathrm{H}+{ }_{2}^{4} \mathrm{He}$
15. ${ }_{96}^{246} \mathrm{Cm}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{102}^{254} \mathrm{No}+4{ }_{0}^{1} n$
16. ${ }_{98}^{250} C f+{ }_{5}^{10} B \rightarrow{ }_{103}^{258} L r+2{ }_{0}^{1} n$

